Dziwny przypadek reszty z dzielenia

swistak.codes 3 lat temu
Gdy we wczesnych latach podstawówki uczyliśmy się dzielenia (szczególnie „pod kreską”), w pewnym momencie dowiadywaliśmy się, iż nie da się liczb idealnie podzielić. Czasami zostaje reszta. W końcu gdy dzielimy 6 na 4, to w szóstce zmieścimy tylko jedną czwórkę, ale to nie oznacza, iż 6 dzielone przez 4 to po prostu 1. Mamy jeszcze 2 reszty, ewentualnie co dokładniejsi podaliby wynik 1,5. Jak się okazuje, obliczenie reszty z dzielenia, mimo iż wydaje się czymś prostym i oczywistym... no cóż, zawsze coś musi się komplikować. Dlatego też przeanalizujmy tę operację: rozłóżmy ją na czynniki pierwsze i zobaczmy, co może tutaj pójść inaczej, i dlaczego, mimo różnych wyników, wciąż wszystko jest poprawnie.
Idź do oryginalnego materiału