Czy szerokopasmowa Akula używa kształtu fali FBMC-SS?

i56578-swl.blogspot.com 10 miesięcy temu

The thought for this post came to me while talking with my friend ANgazu (from radiofrecuencias.es) about an emerging Spread Spectrum (SS) method that uses MultiCarrier waveforms (MC-SS). The question that came up was whether the alleged "wideband" Akula (15 × 500Bd DBPSK) utilized this kind of spread spectrum technique, specifically a Filter Bank based multicarrier waveform (FBMC-SS).

I demodulated the 15 channels and found that they carry the same information carried by the following "usual" FSK 500Bd/1000 transmission (Figs. 1,2,3).

Fig. 1 - channels 1-6
Fig. 2 - channels 7-12
Fig. 3 - channels 13-15 and FSK segment

Channel separation is 2 Khz, rather adequate to let a easy detection and filtering of the subcarriers, for a full bandwidth of 30 KHz (Figure 4). As 1 can see, wideband Akula's spectrum is very different from another multicarrier waveforms like OFDM or mPSK (if only for the utilized bandwidth).

Fig. 4 - wideband Akula and its spettral occupancy
Two popular spread spectrum systems in usage present are frequency-hopping spread spectrum (FH-SS) and direct-sequence spread spectrum (DS-SS). The basic thought of the multicarrier spread spectrum (MC-SS) is to transmit redundant information on multiple subcarriers with a slight phase variation on each one. The Filter Bank MultiCarrier Spread Spectrum (FBMC-SS) waveform, as its name implies, makes usage of a filter bank to make a spread spectrum technique. With this waveform, data symbols are spread across a number of non-overlapping adjacent subcarriers unlike in DS-SS, where spreading is performed across time, as it happens utilizing Walsh Direct series Spread Spectrum (Walsh DS-SS). The carriers are positioned in a way that the receiver can isolate a single channel by means of selective filtering without interchannel interference. 1 unique feature of this FBMC-SS construction is that it can easy mask portions of the band that are corrupted by interference or jamming intended by a foe: indeed, a narrow band interference stays well isolated and does not affect more than a fewer subcarriers (it is no coincidence that I heard wideband Akula utilizing a distant SpyServer receiver located in Ukraine).
I don't have the tools to say for certain that they usage a FBMC-SS waveform, but there are any elements that lead to this conclusion. In the links below you can download, in addition to the signal and the channel demodulations, interesting documentation about FBMC-SS so that people more skilled than me can comment or deny our hypothesis.
https://www.dropbox.com/scl/fi/kp1...
https://www.dropbox.com/scl/fi/enue79...




Idź do oryginalnego materiału